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ABSTRACT: Using the resonance chiral theory Lagrangian, we perform a calculation of the
vector and axial-vector two-point functions at the next-to-leading order (NLO) in the 1/N¢
expansion. We have analyzed these correlators within the single-resonance approximation
and have also investigated the corrections induced by a second multiplet of vector and
axial-vector resonance states. Imposing the correct QCD short-distance constraints, one
determines the difference of the two correlators II(¢) = IIyv (t) —IIaa (%) in terms of the pion
decay constant and resonance masses. Its low momentum expansion fixes then the low-
energy chiral couplings Lig and Cg7; at NLO, keeping full control of their renormalization
scale dependence. At g = 0.77 GeV, we obtain L7 (o) = (—4.440.9)-1072 and Cg,(110) =
(3.14+£1.1)-107°.
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1. Introduction

Effective field theory [[[] is nowadays the standard technique to investigate the low-energy
dynamics of QCD. In particular, the chiral symmetry constraints encoded in Chiral Pertur-
bation Theory (xPT) provide a very powerful tool to access the non-perturbative regime
through a perturbative expansion in powers of light quark masses and momenta [f—[].
The precision required in present phenomenological applications makes necessary to in-
clude corrections of O(p®). While many two-loop xPT calculations have been already
carried out [f], fi], the large number of unknown low-energy couplings (LECs) appearing
at this order puts a clear limit to the achievable accuracy [i]. A dynamical determination
of these xYPT couplings is compulsory to achieve further progress in our understanding of
strong interactions at low energies.



A wuseful connection between xPT and the underlying QCD dynamics can be estab-
lished in the limit of an infinite number of quark colours [, §. Assuming confinement, the
strong dynamics at No — oo is given by tree diagrams with infinite sums of hadron ex-
changes, which correspond to the tree approximation of some local effective Lagrangian [J].
Resonance Chiral Theory (RxT) provides a correct framework to incorporate these massive
mesonic states within an effective Lagrangian formalism [0 -[1J]. Integrating out the heavy
fields one recovers at low energies the xYPT Lagrangian with explicit values of the chiral
LECs in terms of resonance parameters. Since the short-distance properties of QCD im-
pose stringent constraints on the RxT couplings, it is then possible to extract information
on the low-energy xPT parameters.

Clearly, we cannot determine at present the infinite number of meson couplings which
characterize the large-N¢o Lagrangian. This would be equivalent to achieve an explicit
dynamical solution of the QCD spectrum in the No — oo limit. However, one can obtain
useful approximations in terms of a finite number of meson fields. Truncating the infinite
tower of meson resonances to the lowest states with 0=, 07", 17~ and 1** quantum
numbers (Single-Resonance Approximation), one gets a very successful prediction of the
O(p*N¢) xPT couplings in terms of only three parameters: My, Mg and the pion decay
constant F' [[i]. Some O(p®) LECs have been already predicted in this way, by studying an
appropriate set of three-point functions [B, Q] More recently, the program to determine
all O(p®) LECs at leading order in 1/N¢ has been put on very solid grounds, with a
complete classification of the needed terms in the RxT Lagrangian [[J].

Since chiral loop corrections are of next-to-leading order (NLO) in the 1/N¢ expansion,
the large- N¢ determination of the LECs is unable to control their renormalization-scale de-
pendence. This introduces unavoidable theoretical uncertainties, which are very important
for couplings related with the scalar sector. First analyses of resonance loop contributions
to the running of L,(u) and L}(u) were attempted in ref. [[5] and ref. [Lf] respectively. In
spite of all the complexity associated with the still not so well understood renormalization
of RxT [[d-[I§, these pionnering calculations have shown the potential predictability at
the NLO in 1/Ng.

Using analyticity and unitarity we can avoid all technicalities associated with the
renormalization procedure, reducing the calculation of simple Green functions to tree-level
diagrams plus dispersion relations. This allows to understand the underlying physics in a
much more transparent way. In particular, the subtle cancellations among many unknown
renormalized couplings found in ref. [Iff] and the relative simplicity of the final result can
be better understood in terms of the imposed short-distance constraints. Following these
ideas, in ref. [[J] we determined the couplings L (p) and Cig(p) at NLO in 1/N¢, through
an analysis of the difference between the scalar and pseudoscalar current correlators. As
a next step, we present in this article the more involved study of the two-point function
of a left-handed and a right-handed vector currents, which allows us to perform a NLO
determination of the couplings L',(x) and Cg; ().

To fix the notation, we introduce the RxT Lagrangian in the next section. The current-
current correlators are defined in section [, where we discuss the relation between their ab-
sorptive parts and meson form factors. Our study of the vector and axial-vector correlators



is presented in section [], while section [] contains the determination of L%, () and C§,(u).
A summary of our results is finally given in section [§. In order to achieve our goal, we
have performed an exhaustive analysis of scalar, pseudoscalar, vector and axial-vector form
factors with two external meson legs as final states. The results of this lengthy calculation
are given in appendix [A]. Further technical details on the computation of current-current
correlators and their dispersive representation are contained in appendices [B and [J.

2. The RxT Lagrangian

Let us adopt the Single Resonance Approximation (SRA), where just the lightest resonances
with non-exotic quantum numbers are considered. On account of large-N¢, the mesons
are put together into U(3) multiplets. Hence, our degrees of freedom are the pseudo-
Goldstone bosons (the lightest pseudoscalar mesons) along with massive multiplets of the
type V(177), A(1*T), S(0T*) and P(0~"). With them, we construct the most general
action that preserves chiral symmetry. Since we are interested on the structure of the
interaction at short distances, we will work in the chiral limit. With this simplification
we do not loose any information on the LECs we want to determine, because they are
independent of the light quark masses.

The Resonance Chiral Theory must satisfy the high-energy behaviour dictated by
QCD. To comply with this requirement we will only consider operators constructed with
chiral tensors of O(p?); interactions with higher-order chiral tensors would violate the QCD
asymptotic behaviour, unless their couplings are severely fine tuned to ensure the needed
cancellations at large momenta. Moreover, we will restrict our analysis to operators with
a maximum of three resonance fields, because these are the only ones contributing to the
observables we are interested in (tree-level two-body form factors and one-loop correlators).

The different terms in the Lagrangian can be classified by their number of resonance
fields:

Lryr = Ly + ZﬁRl + Z LR Ry, + Z LRRyRs + -+ (2.1)
Ry R1,Rs R1,R2,R3

where the dots denote the irrelevant operators with four or more resonance fields, and the
indices R; run over all different resonance multiplets, V, A, S and P. The O(p?) xPT
Lagrangian [,

Ly = B uur+ x4 ), (2:2)

contains the terms with no resonance fields. The second term in (R.]) corresponds to the
operators with one massive resonance [L0],

F ) G ,
Ly = ﬁm ey 4 ;—f;mu[uﬂ,u 1), (2.3)
£A = FA <A,uz/fl—w>7 (2'4)
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Ls = cal Suyu) + em(Sxs) . (2.5)
Lp = idm(Px_). (2.6)

The Lagrangian Lg, r, contains the kinetic resonance terms and the remaining operators
with two resonance fields [[Ld, [[2, [Lq],

Lin — %(V“RV“R — M3R?), (R=S,P) (2.7)
Lin — —%(VARMVVR”“ - %MgRMVRm, (R=V,A) (2.8)
Lrr = NP(RRuFu, ) + AN5¥( Ru, Rut) + A\fR(RR x4 ), (R=25,P) (2.9)
Lsp = AP {ua{ VS, P}) +iX5" ({S, PIx-), (2.10)
Loy = NV ({S, Vi utu) + X5V (Su, V¥, ) + A3V ({S, Vi } 1), (2.11)
Lsa = NA{VLS, Ay ) + AA{S, A b2 ), (2.12)
Loy = XV ([VFP,VuJu”) + iV ([P V] f2) (2.13)
Loa = ATN[P ALY + AP AwJuta”), (2.14)

Lva = NNV, Awlx-) + DNV, Avalhy) + 3™ [V Vi, A" Jua )
FiIN A (Vo Vi, A%y 4+ iANYM([V o Vi, AP Ju®)
A ([Viw, A7), (2.15)
Lrr = MNP R R ugu®) + AN Ru® R ug ) + MR Ryo R “utuy, )
AR Ry R ) + MR Ry (0 R + ug R0t )
F AT R R X1 ) + i Rua R 1Y) (R=V,A)  (2.16)

Finally, the last piece of eq. (2.1]) includes the operators with three resonance fields. We
only list those operators needed for the calculation of the form factors we are interested in
(terms with only resonance fields and covariant derivatives V,,):

ALsrr = X5 (SRR) + NS V,RV'R), (R=5.P) (217)

ALsgrr = MRR(SR,, R ) + \RR( SV, RF VYR, ) + ASRR(S VYRFV Ry )
+ A S Vo R VO Ry ) + A(S{RM , V2R, )
+ASRR(SIR 0, VIV, R} (R=V,A) (2.18)

ALgpy = NPA(AWIV, S, V,P}), (2.19)



ALpya = INVA( PV, A™]) + iXTYA( PV, VH VY AL

+INVA(PIVY VI VALY + iIXSYA(PIV, VY VAL

+HIANYA(PIVIY VEALLY A idEVA(PIVEY Y VY Ay )

+IAGVA(P VIV, VR ALY, (2.20)
ALygrr = i \VF( VMV ,RV,R), (R=S5,P) (2.21)
ALyyy = PN VV(VHV V%) 4+ i XYYV (VI V , Vas, V, V)

HiA YV V' VOV, ViV, 2T) + i N YV VIV Ve, VOV

+i A YV VIV Via, VsV + i XYYV (VI [VOV,,, VAV,6] )

FiAS VAV VY0, VOV, 6] ) + i WYV (VI VY5,V V,G]) , (2:22)
ALyan = iANMNVALLALYY +i ANV, Ayg, V, A%

HIAAM VIV Ay, VaALT) + i A (VIVIY [ A, V3 ALT)

HAA VIV L A, VAL + i NNV, VY [Aga, VEATT)

FiAA VOV , Aga, AP]) + i AN VIV Ay, V5 AP

TNV VP [ Ay, VAP + i AN (V3VH [V, Ay, AP

HINO (VI [V Ay, VI Agg] ) + i NPV [V Ay, VO ALg) )

+HING VOV A, VA g] ) + i NN VIV Ayp, VI AL])

FIANPAVOVI[AL, VP ALY . (2.23)

All coupling constants are real, Mp are the resonance masses, the brackets (...) de-
note a trace of the corresponding flavour matrices, and the standard notation defined
in refs. [[[d, [ is adopted.

Our Lagrangian Lg, 7 satisfies the N¢ counting rules for a theory with U(3) multiplets.
Therefore, only operators that have one trace in the flavour space are considered [R0].
Possible local terms with two traces in flavour space, which would contribute at NLO in
the 1/N¢ expansion at tree-level, are not required for the observables that we are going
to analyze. The different fields, masses and momenta are of O(1) in the 1/N¢ expansion.
Taking into account the interaction terms, one can check that F, Fy, Gy, Fa, ¢q, ¢ and
dy, are of O(vNg); A2 of order O(NS) and A58 of order O(1//Ng). The mass

dimension of these parameters is [F| = [Fy] = [Gy] = [Fa] = [cqd] = [em] = [dm] =
G 2T) = B, (A1) = ED and (A7) = B7L.

Note that the U(3) equations of motion have been used in order to reduce the number



of operators. For instance, terms like (P V,u/) are not present in eq. (P.6), since using the
equations of motion they can be transformed into operators that, either have been already
considered, or contain a higher number of resonance fields.

The RxT Lagrangian (R.1)) contains a large number of unknown coupling constants.
However, as we will see in the next sections, the short-distance QCD constraints allow to
determine many of them.

3. Form factors and correlators at NLO in 1/N¢

Let us consider the two-point correlation function of two currents in the chiral limit:
Wila) = i [ dtoe™ O (@0 50)7) 10) = (~g"¢ +0"0") ex(a?),
My (o) = i [ dloe™ O (@3 0)') 10, (31)

where J% (x) can denote the vector or axial-vector currents and Jy (z) the scalar or pseudo-
scalar densities,

Ji dyu, Jg = du,
Jh = dyFysu, Jp = idysu. (3.2)

The associated spectral functions are a sum of positive contributions corresponding to
the different intermediate states. At large ¢, the vector and axial-vector spectral functions
tend to a constant whereas the scalar and pseudo-scalar ones grow like ¢ [2]—-P4]. There-
fore, since there is an infinite number of possible states, the absorptive contribution in the
spin-1 correlators coming from each intermediate state should vanish in the ¢ — oo limit
if we assume a similar short-distance behaviour for all of them. The high-energy behaviour
of the spin-0 spectral functions is not so clear as, a priori, a constant behaviour for each
intermediate cut does not seem to be excluded. However, the fact that Ilgs(t) — pp(¢)
vanishes as 1/t? in the chiral limit B3, B4, the Brodsky-Lepage rules for the form fac-
tors [RH and the 1/t behaviour of each one-particle intermediate cut (tree-level exchanges)
seems to point out that every absorptive contribution to ImIlyy(¢) must also vanish at
large momentum transfer.

At leading order in 1/N¢ the two-point correlation functions reduce to tree-level ex-
changes of meson states with the appropriate quantum numbers. At the next-to-leading
order, they get contributions from two-particle exchanges and, therefore, one needs to con-
sider quantum loops involving virtual resonance propagators. The ultraviolet behaviour
of these quantum loops was analyzed for the pion vector form-factor and Ilgs_pp(t) in
refs. [I6, [[§, [9. We will present here a more general analysis, although focusing in par-
ticular in the IIyy_44(¢) correlator.

The optical theorem relates the two-particle spectral cuts with the corresponding two-
body form factors. A tree-level calculation of the form factors determines the spectral
function at the next-to-leading order in 1/N¢. The complete correlator can then be recon-
structed through a dispersive calculation, up to possible subtraction constants [[[J].



Figure 1: Tree-level contributions to the vector form factor of the pion. A single line stands for
a pseudo-Goldstone boson while a double line indicates a vector resonance.

We have calculated all two-body form factors associated with the scalar, pseudoscalar,
vector and axial-vector currents, generated by the RxT Lagrangian discussed in the previ-
ous section, and have analysed their explicit relations with the spectral functions, studying
their ultraviolet behaviour. In the simplest cases with just one form-factor F,, m,(t), the
relation takes the form

ImH(t)‘ = f(t) ‘fmhmz (t)‘27 (33)

mi,m2

with £(¢) a known kinematic factor that depends on the considered channel. Imposing that
the spectral function must vanish as 1/t at t — oo yields that F,, m,(t) has to behave in
a given way depending on £(¢). Thus, some constraints on the parameters are found. In
appendix A, we give the whole list of form factors in the even-intrinsic-parity sector of RxT
in the SRA, the exact relations between them and the spectral functions, the constraints
derived from the high-energy analysis, and the structure of the form factors after imposing
the proper short-distance behaviour. Some of them can be found in former literature [ff, [Ld].

One of our aims is to clarify the status of form factors involving resonances as asymp-
totic states, how they must behave at short distances and which constraints can be ex-
tracted. Although their status as external Fock states can be questionable, the presence
of resonance states at intermediate loops is unavoidable if the hadrons are to be described
through a quantum field theory. As an implication of this, well behaved amplitudes with
resonances as external states should be studied when considering calculations at the one
loop level. We have also analysed form factors involving one photon and one meson in the
final state, but no new constraints emerge from their short-distance analysis. Thus, we find
that the two-meson form factor analysis provides the most stringent set of constraints.

As an example, we show here the case of the pion form factor, defined through the
two-pseudo-Goldstone matrix element of the vector current:

(7 (p1)7™ (p2)ldr™ul0) = V2F L (?) (2 — p1)" . (3-4)

The diagrams contributing at leading order in 1/N¢ are shown in figure [. They generate
the result
FyGy t

F2 Mz —t’

Fr(t) =1+ (3.5)



By means of the optical theorem, the corresponding imaginary part of the vector correlator
is found to be
0(t)

= S IFR P (3.6)

ImHVV (t) |7r7r

Since ImIlyvy (t)|r» should vanish in the limit ¢ — oo, the form factor is also constrained
to be zero at infinite momentum transfer. Therefore, the vector couplings should satisfy

Fy Gy = F?, (3.7)
which implies
M2
v(t) = L4 3.8
Finlt) = 3y (33)

as we would have obtained imposing the Brodsky-Lepage behaviour in eq. (B-5).

4. The correlator V — A in RxT

Let us consider the two-point correlation functions of two vector or axial-vector currents,
in the chiral limit. Of particular interest is their difference II(t) = IIyy(t) — oA (), which
is identically zero in QCD perturbation theory. When ¢t — oo, this correlator vanishes as
1/t 1R

In the large-N¢ limit, II(¢) has the general form

2F2 2F3 2F?
(t) = - - 4.1
®) ZZ: Mg —t M3 —t t (4.1)

which involves an infinite number of vector and axial-vector resonance exchanges. This
expression can be easily obtained within RxT, with Fy; and F4, being the relevant meson
couplings.

At the NLO in 1/N¢, II(¢) has a contribution from one-particle exchanges plus one-loop
corrections II(t)|, which generate absorptive contributions from two-particle intermediate
states. The corresponding two-particle spectral functions of the vector and axial-vector
correlators take the form:

1 _ nypv(t) 1 _ nypa(t)
= ImHV(t)|p T 9 n2’ = ImHA(t)|p T 9 o4n2 (42)
with
2 2 M3 M3 t v 12
pv(t) = 0Q) |F @O + 00t —Mz) (1——= )| " +4+—3 || FAxl
t t M3

M2N? [t £ - M3 2t
I - 2(1-24) (14 =
(128 (s o) o 2 (1-52) (1 2

2 M2\ ¢ 2
<Re(F4p03;" g + 0= Mp) (1= 52 ) G+ (43)



pa(t) = 0(t — M2) <1— M72> { (M_2+4+ M2> | Féal? + <1_ M73>2

t t2 5 M2 2t . o
X (M—‘% + M) ’gvﬂ‘ + 2 (1 — T) <1 + M2 > Re{fvﬂgvﬂ }}

2
vo ) (1-25) e o+ (4.4

The dots stand for contributions with higher thresholds. Here we just show the lowest-mass
two-particle exchanges: two Goldstone bosons or one Goldstone and one resonance. In the
energy region we are interested in, exchanges of two heavy resonances are kinematically
suppressed (appendix C) [I§. Our normalization takes into account the different flavour-
exchange possibilities.

Using its known analyticity properties, II(t) can be obtained from the spectral func-
tions through a dispersion relation, up to a subtraction term which at NLO has the same
structure as the tree-level resonance exchanges (appendix C). Therefore, the unknown sub-

traction constants can be absorbed by a redefinition of the resonance couplings and masses
at NLO in 1/NC:

2 [? 2 Fy,? 2F?

my,ma2

The terms II(t)|n, m, denote the contributions associated with the two-meson ab-
sorptive cuts mi, mo. Their imaginary parts are related to the corresponding two-meson
form-factors through the optical theorem (the precise relations are given in appendix A).
Since IL(t)|m, m, should vanish at infinite momentum transfer, the full II(¢)|,,, m, contri-
bution can be reconstructed from its absorptive part through an unsubtracted dispersion
relation. The fact that the form-factors are well behaved at infinite momentum guarantees
that the dispersive integrals are convergent. Notice that analytic polynomial contributions
cannot be present in ([l.§) because they would violate the short-distance QCD constraints.

4.1 Single resonance approximation

Let us adopt the SRA as our starting point. At leading order in 1/N¢, I1(t) takes then the
simpler form:

2F2 2F3 2F?
MZ_t MI-i @t
The high-energy behaviour required by the OPE, TI(¢) ~ 1/t3, implies the first and second
Weinberg sum rules (WSRs) [R1]-RJ:

I(t) =

(4.6)

FZ — F3 = F?, FZME — FAM3 = 0. (4.7)

These relations determine the vector and axial-vector couplings in terms of the resonance
masses: )
M3

F2=Fr A
M2 — M2

(4.8)



with M4 > My . Using the constraint (B.7), obtained from the pion form factor, one gets
the additional relation
M? — M?
Gy = PPV 4.9
The short-distance behaviour of the Ilgg_pp correlator 2] and the pion scalar form-
factor [P7] generate similar expressions for the scalar couplings [fi, 9]

C2 _F_2 M% d2 _F_2 Mg

m ) M}%_Mg’ mo 8 M?:—M§7
F2M2_M2

2=—-—F£_ 3§ Mp > Mg. 4.10

Cq 2 M% ) P S ( )

Thus, at LO in 1/N¢, the couplings Fy, Fa, Gy, ¢p, cq and d,, are fixed in terms of F,
My, M, Mg and Mp, the chiral limit values of the pion decay constant and the resonance
masses.

We can study in a similar way the form factors needed to compute the two-particle-
exchange contributions II()|y,, m,. For the lightest channels, the separate short-distance
analysis of each form-factor allows their determination in terms of the resonance masses
and the couplings Fy, Gy, Fa and cq. Using the large-N¢ relations in egs. (E§), (£9)
and ([L.1(), the results can be further simplified, leaving the form-factors expressed in terms
of just the resonance masses [[L§, [L[9]:

M2
FLo(t) = —5%
71'7'('() M‘%—_ty
M? M
Firlt) = =772 — L, Gar(t) = 0, (4.11)
MZ T ME -t
pr(t) =0,
M2 M3(2M2 —t M2 2M3 M2
Footy = —[1- DL MARMY =0 - gy o My 2MAMY
M2 /2 M3
Fa(t)= /1 - =2 A (4.12)
M2 M3% —t

The explicit results in terms of RYT couplings can be found in appendix A and in ref. [(§].
These form-factors have been determined by imposing a good high-energy behaviour on
the corresponding spectral functions, i.e. by demanding that the contributions from each
absorptive channel to py(t) and pa(t) should vanish at infinite momentum transfer. In
this first analysis, performed within the SRA, we have just focused our attention on each
separate channel and we have not used information from other absorptive two-meson cuts
to further simplify the form-factors.!

As it was found in the case of the scalar and Ilgg_pp correlators , E], it is quite
remarkable that these short-distance constraints completely determine the form-factors

In ref. @], it has been argued that large discrepancies may occur between the values of the masses

— 10 —



in terms of the resonance masses. The form factors Fp_(t) and G4 _(t) turn out to be
identically zero, within the SRA.

Once the form factors have been determined, the corresponding contributions to the
two-point correlation function can be obtained in a rather straightforward way. The first
two-meson contribution to II(¢) is given by the mr-cut:

2
ng 1 M2 t —t
T(t)rr = -2 Sl — I | . 41
®)l 2 2472 <M5—t Az (4.13)

The double pole at ¢ = M‘% is generated by the large-N¢o expression for the pion form
factor in eq. ({.11)).

Away from the resonance peak, where the perturbative 1/N¢ expansion is valid, the
vector meson width generates the double pole structure. This can be easily realized by
rewriting the sum of tree-level and the II(¢)|,, contribution in the form

2FT,2 1T 1 MyT —t
H(t):+{1 — S Vomm VQVH” In — +...}, (4.14)
My % —1t T My T My —t My

where the dots stand for higher channels and the V-meson decay width into two Goldstones
is given in the chiral limit by I', =~ = <5 &7

a manifest way how the formal 1/N¢ suppression works in terms of the physical hadronic

BI. Likewise, this expression shows in

parameters.

The next (ordered by threshold) absorptive cuts correspond to Vi, S, Ar and Pr.
Due to the complexity of the results their precise expressions are relegated to appendix B.
It is possible to show that states with higher energy thresholds turn out to be more and
more suppressed (see appendix C.2). Thus, only the contributions from cuts with at most
one resonance field have been taken into account: 7w, Pm and Anw for the vector correlator
and V7 and St for the axial-vector one. All the results for particular channels from
appendix A, obtained in the two-flavour case, have been multiplied by a factor ny/2 in
order to give the general result for ny light flavours shown in appendix B.

At large values of ¢, the one-loop contribution has the behaviour

== <5;30+5g30 In M3>+ o (aggo+aggo lnM—‘2/>—|—(9 <t—3> . (4.15)

1(#)],
Since the logarithmic terms In(—t)/¢t and In(—t)/t? should vanish, one obtains the con-
straints:

oM =5 —o. (4.16)

NLO NLO
Taking into account the tree-level contributions and imposing the right short-distance be-
haviour, II(¢) ~ 1/t3, one gets the additional relations:

F2(1+0W )y — 2 + F2 = 0,

NLO

F2M26®  — FL2 M2 + FR2 M2 = 0, (4.17)

NLO

and couplings of the full large-N¢ theory and those from descriptions with a finite number of resonances.
Even in this case, it is found that one can obtain safe determinations of the LECs as far as one is able
to construct a good interpolator that reproduces the right asymptotic behaviour at low and high energies.
Furth% issues related to the truncation of the spectrum to a finite number of resonances are discussed in
refs. [RY,

— 11 —



which determine the couplings Fy, and F; up to NLO in 1/N¢:

M" 2 M2
Fr2—p2__"A (1450 V(2
|4 Mz2 _ M‘T/2 + NLO Mle NLO |

r2
Fi? = o M <1 L5 5@

Mz2 _ M‘r/2 NLO NLO) : (418)

Within the SRA, the conditions (f.14) have the unique solution, M4 = My, Mp =
V2Mg. Note that the whole A and V7 contributions to II(¢) are then identically zero,
while TI(¢)|s, cancels the leading high-energy behaviour of II(¢)|.r. The 51(\:?()) corrections
are given by

W _n M _ Mg _ Mg ’ Mg 3Mg 9 My
1) 1 5 |3 5 In > | + 5 +— ,
NLO T 9 g2 2 M2 M2 MZ) T MZ 2 M2

NLO T 9 4872 F2 | M |\ M2 M} MZ) ML M3
oMZ  MA
oV L Vit 4.19
rar T M]} (4.19)

4.2 Numerical impact of heavier vector and axial multiplets

The Resonance Chiral Theory is a phenomenological approximation to QCD that models
large-N¢ by truncating the tower of resonances to a finite number. However, an infinite
number of resonances is needed to recover the correct QCD behaviour [[i, §, B9]. Therefore,
it should not be surprising to find conflicts between the short-distance constraints as one
analyzes a wider and wider set of QCD matrix elements. This inconsistence between
constraints has popped up in previous analysis of three-point Green-functions [I4, BQ and
it also arises when comparing the short-distance constraints from vector, axial-vector, scalar
and pseudo-scalar form-factors within the SRA (appendix A) [Lg].

These incompatibilities can always be solved by including additional resonance mul-
tiplets. We follow the Minimal Hadronic Approximation [§], and only include a minimal
set of resonance multiplets such that all relevant short-distance constraints are satisfied for
the problem at hand.

Our explicit form factor expressions in eqgs. (f.11) and ([13) have been obtained
analysing each form factor separately. However the assumed set of short-distance con-
straints is not fully consistent. The results compiled in appendix A show the existence of
two inconsistent conditions: the restrictions for /\ZVA in table [ll from the vector form factor
to an axial resonance field and a pion, and those in table P] from the axial form factor to a
vector resonance field and a pion are incompatible. The simpler solution is the inclusion of
a second multiplet of vector (V') and axial-vector (A’) resonances. One gets in this way a
consistent set of constraints for the couplings of the lowest mass multiplets S, P, V and A4;
any possible problem is then relegated to the heavier states, that produce mild effects on
the region of validity of our description (of course, if one was interested in physical form
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factors involving V' or A’ as external states, the addition of even heavier multiplets would
push the problem to the next level in the resonance towers).

In practice, one adds to the RxT Lagrangian the necessary pieces involving the new
multiplets V' and A’. The reanalysis of the Am vector form-factor and the V7 axial form
factor of appendix A yields, respectively, the constraints

Fy (20 — 2002 + A2 +20Y8) + FL(20Y A — oY A 1 AV A 1 aal'4) = By,
Fy(=223% + YY) + FL (=22 4+ Y =0, (4.20)
Fa(20 — AYA — 208 4 B (24 — AXA’ 2>\VA ) = —Fy + 2Gv,
Fa(=203% + M2 + Fi(=22Y4 + 04 = =Gy, (4.21)

so the incompatibility is not present any longer.

Once these second multiplets are considered, the large- No constraints for Fy, Fa, Gy
are obviously modified (the couplings of any effective Lagrangian contain the information
on the heavier states not included in the theory). Egs. (f£§) and (f.9) take now the form:

M? M2
FR=F>_ 4 _ <1+e1——V62> :

M3 - Mg M3
M2
Fi =F? VE _VM2 (I+e1—e2),
M%— M2 (1—e3)?
R (1.22)
A 14+¢6 — M—EQ
with the corrections ¢; given by
F2/ F2/ F2/M2/_F2/M2/ F/G !
6 =4 , €= A A 5 i €3 = ViV (4.23)
F? F? F2 Mg F?

The corrections ¢; seem to produce a tiny effect. The value of e3 &~ 0.007 was extracted from
the analysis of the ALEPH data on the pion vector form factor [BI]. On the other hand,
the assumed convergence of the Weinberg sum-rules and its phenomenological success [f]
seems to point out that |e1], |ea] < 1. For this reason, in our numerical calculations we
will only take the e; corrections into account when they appear at LO in 1/N¢. They
will be neglected whenever they enter into contributions which are NLO in 1/N¢, as they
are a correction to a correction. Notice that we have introduced both a vector and an
axial-vector multiplet in order to keep the assumed convergence of the V — A Weinberg
sum-rules. Considering the V'’ contribution alone would lead very likely to large corrections
€1,€2 ~ 1 and a lost of the convergence in the sum-rule.

The calculation of the seven form factors we are interested in is straightforward. The
only novelty is the introduction of V' and A’. Due to their heavier thresholds, we neglect
any two-particle channels including these higher multiplets (appendix C). Only the single-
resonance exchange contribution has been considered for the new V' and A’ states. Since
we have now a much larger set of couplings, the Brodsky-Lepage form factor constraints [RF]
and the OPE asymptotic behaviour of the two-point Green-functions are no longer enough
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to fully determine the form-factors. One needs to fix some combinations of the )\ZV(’)A(,)
couplings by other means. Fortunately, we can use the known constraints coming from the
<V AP> Green-function analysis of ref. [[4]. The information from the (VAP correlator
was combined in ref. [[l4] with the two Weinberg sum rules and a vanishing high-energy
behaviour for 77, and FU_.2 Considering that ref. [[4] only used the lowest-lying resonance
multiplets, their constraints are right up to O(e) corrections, which we assume to be tiny:

Fy 2
AYA — AYA —2AYA = L2, O(e),
CFy | Fy
—205A YA = —% +O(e). (4.24)

Note that it is not a surprise that these constraints are equivalent to the ones coming from
the axial form factor to a vector resonance and a pion (table ), because this form factor
is related to the axial form factor to a photon and a pion, considered in ref. [[4]. Taking
into consideration that the couplings )\ZVA appear in II(¢) only at NLO in 1/N¢, we will
neglect these O(e) terms.

Using eqs. (f.29) and ({.24), and imposing the right short-distance behaviour, one
determines the new form factors:

Falt) = gy + 06,

- () [ R o
G0 = =374 1 T + 000

FR(t) éf ar ]\_4% Mé,—) )—i-(’)(e), (4.25)
Fa(0) = - 1- 3 M0 o0,

Gea(t) = 1 - ﬁg 2 o),

Fé(t) = |1- W AgM_At +O(e). (4.26)

In order to get more compact expressions, this time we have used the information of some
form-factors to simplify others. Due to the consideration of a higher number of resonance
multiplets the inconsistences between channels have disappeared, in agreement with the
assumed convergence to the full set of large-N¢ relations as more and more states are
progressively included in the theory. The Fp_ form factor has been simplified using the

2The spirit of ref. [@] is to consider form factors with stable states (pseudo-Goldstone modes and on-shell
photons).
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short-distance i, constraint MV = V2Gy /4d,, (appendix A). In F&. we have used the
relation extracted from Fj_, A?A = 0. Finally, the constraints in eq. (.24) have been
employed to simplify the vector-Anm and axial-V 7 form factors. Since the O(e) corrections
are neglected in the NLO terms, II(t)|, is known in terms of just the resonance masses and
F'. Notice that, up to O(e) corrections, the 77 and V' form factors remain the same as in
the SRA and the only change in the axial S7 form factor is the replacement Mg — M 4.

It would be possible to add as well an extra multiplet of scalar and pseudo-scalar reso-
nances, S’ and P’. However, these mesons can only appear in the V — A correlator within
loops, never at tree-level. Hence, their contributions will be suppressed due to their high
threshold.

When the V/ and A’ resonances are included in the analysis the resulting expression
for TI(t) becomes much more complex, though the formal structure remains exactly the
same. The conditions gl(\llL)o = gl(\?L)O = 0 allow to determine M4, and My:

ME, = M3,
2
s 1 My My (M _2M3 Mg Mg,
Mj = ALY R 3 —A)+2( L -1)(1 g
29 Mg M M3 M2 M? M
P

(e MEN (2My,  5M3EMy, N 6M3 M2, N 2M3 (4.27)
M? M M M ME )|
A Vv \4 Vv \4

The new NLO corrections 51(:;}()) are given by

2 2 2 2 2
m _nr My [ My My m o Mp My, (m)
5NLO 2 A8m2F?2 { + M2 M‘2/, o M‘2/ £A7r + M2 M2, _ M‘2/ £P7r

M m M2m
- <1 M¥> & % ( - —)s } (4.28)

which are known functions of the resonance masses. The different contributions to II(t)

and the coefficient functions 57(,?1"27,,2 are relegated to appendix B.

Note that in this case the determination of Fy, and F”j changes slightly. One can easily
reanalyse eqgs. ([L1§) to find that now

M2 M2
r 2 2 A 1 2
F2=F TR TR [1+el+6§m> e (62+51(\130>:| :
M2
r2 _ 12 % 1 2

where we have approximated FYy,, ~ Fy , I}, ~ Fy, since the effect of the second multiplet
is expected to be numerically small and the difference between the LO and the NLO
couplings would represent a subleading correction to an already tiny contribution.
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5. The chiral couplings Lj,(p) and Cg, (1)

The low-momentum expansion of II(t) is determined by xPT [d, H, BJ:

2F? ., T' /5 —t
II(t) = 4 8L (1) <— —In —2>

C 4An2 \3 o
t r Pé(ig) 5 — 0 2

with T'yp = —1/4 and Fg) = —Lg/2 [J. The couplings F?, Liy and Cg7/F? are of
O(N¢), while "9 and Fé?/F2 are of O(NQ) and represent a NLO effect.

The coefficients of the In (—t/u?) and ¢ In (—t/u?) terms are fixed (up to computable
normalization factors) by the values of FY (t) and its derivative, respectively, at ¢ = 0.
These logarithmic contributions are generated by the Goldstone loops, which are also
present in RxT. Therefore, the low-energy limit of RxT is guaranteed to reproduce the
structure (p.1)) with the right values of I';y and Fé];). In addition, RxT provides explicit pre-
dictions for the LECs Lj,(p) and Cg; (), in terms of the resonance parameters. Since I1(t)
does not depend on the xPT renormalization scale, these predictions satisfy the correct u

dependence
The low-energy expansion of ([.I)) determines the chiral LECs at large N¢ ([, [2, [4]:

LlO = — F‘% + F‘% = — F_2 i + L
aMZ " 4M? 4 \MZz " Mm2)
Csr = FzFa _ F2F3‘ - F_4 L + # + L (5 2)
T sMmy o sMEt 8 \ M MEME T ML) ‘

where we have used the relations in eq. ({.§) in order to simplify the final results. Using
My ~ 0.77GeV [BJ] and M4 ~ 1GeV [B4], one gets the large-N¢ estimates Lig ~ —5.3 -
1073 and Cs7 ~ 4.3-107°.

At pp = 770MeV, the phenomenological determination Lf,(uo) = (—5.5 £ 0.7) -
1073 [[@; B3] agrees very well with the large-N¢ estimate. A slightly smaller absolute value,
Lio(po) = (—5.13 £0.19) - 1073, was obtained from a fit to the ALEPH 7 decay data [B§].
The large- N¢ result for Cyy is also in good agreement with the value Cgy = (4.540.4)-1075,
obtained recently from a series of Pade approximants to large-No QCD [B7], using as input
the measured resonance spectrum.

Large-N¢ estimates like those in eqs. (5.9) are naively expected to approximate well
the couplings at scales of the order of the relevant dynamics involved (u ~ Mp). However
they always carry an implicit error because of the uncertainty on u. This theoretical
uncertainty is rather important in couplings generated through scalar meson exchange,
such as L§(u) [, [9). In the present case, it also has a moderate importance. The size of
the NLO corrections in 1/N¢ to Li(p) and Cg; (i) can be estimated by regarding their
variations with u. These are respectively given by

9 Ly, T1o -3 oCy _ Iy —5
d1n p? 3272 08-10°7, d1n p? 3272 0 (5:3)
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At large N¢, a correlator that accepts an unsubtracted dispersion relation is deter-
mined by the position of the poles and the value of their residues, as shown in eq. ([.1),
which gives the general structure for II(¢). In our realization of the RxT Lagrangian, this
corresponds to a complete resonance saturation of the corresponding low-energy xPT cou-

">2) that only include Goldstone fields are absent in RyT; they

plings. Operators of O(p
are generated (through resonance exchange) in the low-energy effective theory, yPT, where
the resonances have been integrated out. Thus, in eqgs. (f.9) we do not have any direct Em
or 5’87 contributions, where the tildes denote (non-existing) RxT operators.

So far, we have been working within a U(3)z ® U(3)r framework, but we are actually
interested on the couplings of the standard SU(3);,®SU(3) g chiral theory. Thus, a matching
between the two versions of yPT must be performed [R(]. Nonetheless, on the contrary
to what happens with other matrix elements (e.g. the S — P correlator [[[]), the spin-
1 two-point functions do not gain contributions from the U(3)-singlet chiral Goldstone;
the 71 does neither enter at tree-level nor in the one-loop correlators. Therefore, the
corresponding LECs are identical in both theories at leading and next-to-leading order in
/Nt Lig(n)V®) = Lio ()Y@, O (1)V®) = Cgr (u)3U).

5.1 Lj,(n) at NLO

As a first determination of the chiral coupling L1g at NLO, we give the expression obtained
within the SRA approximation:

F2/ 1 1 M2 62) 1 M2 1
LT SRA - _ 1 5(1) _ V. _"NLO _ 1 \%4 -
10(:“)| 4 M‘r/2 +Mz2 + NLO M‘r/2 + Mz2 12871‘2 L /‘2 + 6

AMg  TMZ 1 6M5  9Mg 4Mg1 My
My My My My My Mg

where we have used the relations in eqs. (f.1§) to eliminate the explicit dependence on the
couplings F{, and F, and the constraints of eqs. ({.16)) to fix M4 and Mp at large N¢:
MA = MV and Mp = \/iMs.

The needed input parameters are defined in the chiral limit. We take the ranges [E, f,
B3 M{, = My = (770+5) MeV, Mg = (1090+110) MeV and F = (89+2) MeV. Considering
the importance of the axial-vector resonance field for the determination of this observable,
the mass provided by ref. [BJ] is not satisfactory enough due to the large width of this meson.
We prefer to fix the value of M4 in an indirect way, by studying the decays of narrower
resonances like the p(770). From the observed rates I'(p° — ete™) = (7.02£0.13) keV [BJ
and I'(p — 27) = (149.4 + 1.0) MeV [BJ] one is able to estimate the values of the vector
couplings, Fyy = (155.7 & 1.5) MeV and Gy = (66.7 £ 0.9) MeV. These can both be used
to recover the a; mass at large N¢: one gets My = (938 & 13) MeV from the WSR result
in eq. ((.§), while eq. (£.9) gives the slightly larger range M4 = (1160 +40) MeV. Another
large- N determination of M4 was obtained in ref. [B4] from the study of the 7 — ev.y
decay, which yields My = (998 &+ 49) MeV. The NLO mass M, can be recovered from
its large-N¢ value M, thanks to the experimental value of Fy, and the WSR result in
eq. (:29). In spite of the dispersion of values for M4, the corresponding NLO masses turn
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out to be always within the conservative range M’ = (1000 £ 50) MeV, which we will take
as our numerical input.
This gives for the SRA the numerical prediction

Lo (po) SR = (=5.2+£0.4) - 1073, (5.5)

being po the usual renormalization scale, pg = 770 MeV. Notice that in this expression
we only consider the errors derived from the experimental inputs. It does not include the
systematic uncertainties due to neglecting higher resonance effects and the inconsistencies
between form-factor constraints.

To asses the numerical impact of higher-mass resonances, we consider the results ob-
tained adding a second multiplet of vector and axial-vector states. The resulting value for
the chiral coupling L{,(x) takes the form

F? /1 1 1 M2 5
o) =~ (—W + —W) {1ra+a, - T (e 20}
F? {( M2,> M
+— 1+ Y €1 — Veg}
AMZ, M2, M2,
1 My () MPN o, AMy (MR
256m2 | M2, — M2 M%) A M2, — M2 MZ ) Pm
MZ\ MZ\ @ ME 16
2(1- V) pa(1-Z5 )y pom =Y - 21 (56
O T AL

In the first line we have indicated the contribution coming from the tree-level exchange
of the first multiplets V and A, and egs. (.29) have been used to fix the NLO couplings
F{, and F;. The tree-level exchange of the second multiplets V'’ and A’ generates the

contributions shown in the second line, where Fy and Fy4 are expressed in terms of €;
and €y [see egs. (.23)]. The one-loop contribution, given in the third and fourth lines, is
expressed in terms of known functions of the resonance masses, X%imw which are given in
appendix B [see eqs. (B-17), (B.17), (B.19) and (B-21))].

To obtain a numerical estimate, we need the masses of the lowest states, the pion

decay constant and the tiny corrections ¢,, which are related to Fy+ and F.. We take the
following input parameters [B, i, M, = My = (770 & 5) MeV, M}, = M4 = (1000 +
50) MeV, Mg = (1090 £ 110) MeV, Mp = (1300 £+ 100) MeV and F' = (89 + 2) MeV. The
constraints gl(\llL)o = gl(\IZL)O = 0 determine the V’ and A’ masses [see egs. (£.27)]. Assuming the
convergence of the Weinberg sum rules we consider for the higher multiplet corrections the

range €; = 0.0+ 0.1. At the usual x PT renormalization scale pug = 770 MeV, one gets then
Lio(po) = (—3.6 £0.9+£0.3) - 1073, (5.7)

where the second error comes from the ¢; and the first one from the remaining inputs.
The assumed convergence of the Weinberg sum rules carries an implicit cancellation

between the tree-level contributions of the vector and axial-vector multiplets. It is remark-

able that this also leads to subtle cancelations between the V7 and Am contributions.
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5.2 Cg; (1) at NLO

The determination found within the SRA approximation reads

r F* 1 1 1 M2 (M72 + M2 5@
Cor ()P4 = —< + >{1+5§}30_ 2 (M, 4 o)

8 \ Myt My2AMn2 * Myt MA + Myt + MT2M7?
F? 9MZ  12M%  5MS M2
+ﬁ[<—2+ 2 -5 4 63>1 (1——2>
256m2 M2 Mz My M M
1 Mg 5Mg  19MZ My
+ - +2In 4 5 5
3 p? ML 2MZ AME

(5.8)

We have used again the relations in eqgs. ([L.1§) to fix I, and F; and the constraints coming
from eqs. ({.16). Taking the same parameters than in the previous section for the SRA
approximation, one finds, at pg = 770 MeV,

Ol (o) [SRA = (3.940.6) - 107°. (5.9)

Once the second multiplets ¥V’ and A’ are included, the determination of the O(p®)
chiral coupling takes the form:

F* /1 1 1 M2 (M2 +M73?)
C 1 5(1) - |4 Vv A
87( ) 8 <M‘7}4+M‘7}2M22+M24> { + NLO+€1 M‘7}4+M24+M7‘2M7‘2

P M3, M M M
5(2) ) - 1 A TV - \% \%
< (0 + 2 svza W\ Tz, s, )\, T, ) @
F? M? M? 4M3 M?
v (3 ) i g (1 3 )
M2 | M2, — M2 M MZ, — M M

]\42 M2 (2) Mg M2 (5 M2 26
21—V ¥ 4(1- 8 ) VA @ a2V - 228 (510
+ < MA) MAXVW+ < M2> Mi/ S7r+ M 3 ( )

In the first and second lines we show the contributions coming from tree-level exchanges,
where again egs. ({.29) have been used to remove F{, and F. Again, Fy and Fy are
expressed in terms of ¢; and e¢3. The third and fourth lines contain the one-loop contri-
bution, expressed through the known functions X%ml which appear in appendix B [see

egs. (B.16), (B1§), (B-20) and (B.27)].

Using the same parameters as for the Lj,(x) case, one gets the numerical estimate

Cro(po) = (224£1.0+£0.4)-107°. (5.11)

As in eq. (B.7), the second error comes only from those in €; and e3.

6. Conclusions

The large-N¢ limit provides a very successful theoretical framework to understand the role
of resonance saturation in low-energy phenomenology [i]. However, this limit is unable to
pin down the scale dependence of the yPT couplings. Although this is a NLO effect in the
1/N¢ expansion, its numerical impact is very sizable.
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In this paper we have presented a general method to determine the chiral couplings
at NLO in 1/N¢, keeping full control of their renormalization-scale dependence. Through
a one-loop calculation of appropriately chosen Green functions, within RxT, one can get
the needed NLO resonance contributions at low energies. Using analyticity and unitarity,
we avoid all technicalities associated with the renormalization procedure, reducing the
calculation to much simpler dispersion relations. The QCD constraints at short distances
provide a powerful tool to fix the corresponding subtraction constants.

From the theoretical analysis of the (VV — AA) correlator, we have obtained a NLO
prediction of the O(p*) coupling L7, (), which exactly reproduces its right renormalization-
scale dependence. Moreover, we have also determined the O(p®) coupling C§- (1) at the
NLO, controlling its i dependence up to small NNLO effects.

We have used the RxT Lagrangian, within the SRA, to compute the one- and two-
particle exchange contributions to the absorptive part of the correlator. It is remarkable
that, imposing a good short-distance behaviour for the corresponding vector and axial-
vector spectral functions, one fully determines the relevant contributing form factors. Using
a dispersion relation, we have reconstructed the correlator, up to a term which has the
same structure as the tree-level one-particle contributions. However, the stringent short-
distance QCD constraints on II(¢) have allowed us to fix it in terms of resonance masses.
The low momentum expansion of the correlator II(¢) reproduces the right yPT expression,
with explicit values for the LECs Lj(p) and Cg,(u) which only depend on the resonance
masses and the pion decay constant. The resulting analytical expressions for these LECs
are given in eqs. (f.4) and (5.§). Using the presently known information on the resonance
mass parameters, we obtain at y = g = 770 MeV the numerical predictions in eqgs. (F.5)
and (f.9), respectively, where the main uncertainty originates in the input value of M.

To asses the impact of higher-mass states, we introduce a second multiplet of vector and
axial-vector states. While this improves the theoretical description, solving some conflicts
between short-distance constraints obtained from different form factors, it increases the
number of parameters making the numerical results more uncertain. Nevertheless, it is
still possible to obtain the explicit analytical predictions in eqs. (f.6) and (f.1(), in terms
of two small parameters e€; and €5, which are expected to be in the range ¢; = 0.0 £ 0.1.
The corresponding numerical results at = g, given in eqgs. (5.7) and (p-17)), have in both
cases a smaller absolute value than the ones obtained within the SRA.

We can combine the two numerical estimates of the LECs into our final results at

[t = fio:

Lio(po) = (—4.44+0.9)-1073,
Clz(po) = (3.1+£1.1)-107°. (6.1)

The central values lie in between the two determinations, but we have kept the larger error
bars of egs. (B.7) and (B.11]) (adding in quadrature the two uncertainties). Figure P shows
the corresponding predictions as functions of the renormalization scale u. Also shown are
the large-N¢ results and the recent Pade estimate of ref. [B7], which cannot incorporate
the dependence on the scale u. The figure shows that the leading-order approximations
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Figure 2: a) Comparison of the NLO prediction for L7,(x) as a function of u (gray band) versus
our large-N¢ estimate (dashed); b) NLO prediction for C§,(p) (solid gray band) compared to our
LO estimate (dashed) and the large-N¢ result from ref. [B7] (dotted).

agree with our NLO results for values of the renormalization scale around p ~ 0.5 GeV. A
similar saturation scale was also found in the L%(u) study of ref. [Bg.

The ideas discussed in this article can be applied to generic Green functions, which
opens a way to investigate other chiral LECs at NLO in the large-N¢o expansion. In
particular, it looks feasible to analyze the couplings L5 and Lg with similar techniques.
Further work in this direction is in progress.
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A. Two-meson form factors and their short-distance constraints

In this appendix all two-body form factors that can be found in the even-intrinsic-parity

sector of the RxT in the SRA are analysed, following the ideas of section 3. Furthermore the

needed form factors for the V' — A correlator with higher multiplets V'’ and A’ are studied.
The following items are presented for each form factor:

1. The form factor(s) is (are) defined through the corresponding matrix element.
2. The expression of the form factor(s) is (are) shown.
3. Using the optical theorem, the spectral function is given in terms of the form factors.

4. The constraints found by imposing a good high-energy behaviour of the spectral
function.

5. Once the constraints are imposed, the well behaved form factor(s) is (are) presented
again and quoted with a tilde.

— 21 —



Notice that when R?:o or n is written, we refer to the singlet in the U(2) case.

following usual notation is employed throughout the section:

A(a,b,c) = a® +b* + ¢ — 2ab — 2ac — 2bc, oy =+/1—4M?/t.

The

1 Vi = (70(p1)7 (p2)|dy*ul0) = V2 F(t) (p2 — p1)*
Fin L+ B
ImIL, %’fﬂvw(t)P
FyGy = F? — F = %
2 Vi = (AY_(pa,e)m (pr)|dy*ul0)
VY Z}\f{(qe* Py — qpae™) FL (t) + (¢e* P — que*“)g}{w(t)}
Fi, Ba o+ Bl - 2ayA 4 22)R - VA - 2a]
Gh. e I ey
Tl 0 (t— M3) l—gfé/t{ (Mi +4+ M2> \FY |+ (1 - %3)2
x (ﬁg + ﬁ%) Gy |2 +2 (1 MA) (1 + W) Re{F? GY_ }}
AP — 2AYA VA 4 2aA = — 20+ AR =0
]:AF—QMW]T §X7r:0
3 Vi = (P~ (pp)n° (px)|dy*ul0) = V2 (qpx Pp — app pi) Fi,(t)
Fy 2,\1131:1?‘, ﬁ
it (e as) S i
APV =0 o FE.=0
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4 Vi = (VL (p1,e1)V ™ (p2, €2)|dy"ul0)

Vi V2(e125 (2 — ) — (a= €5 — as3 1) )R (6) + V3(ae] 5"

—qe3 £51)GUy (1) + V2B (et gey — pipa eiel) Hy (1)

Fv -1+ 22YV + 7W(M2 5|02+ (AME + 2023V + (40

= 20) (2AVYY YV ATV 20V YY) A VY 4 M AYYY]

Goy \;15 ix\} éwi) [_ 2AYVV L AVVV L AVVV 9\ VWV AVWY )\yvv]
Hiy —2Y e | - AV 4 (4b + 26) (2 VY — VY
CAYVY DAYV g YWY g )\y\/\/)}
ImIlyy 0 (t—4M2) ‘f%j; { (3 + ML) 8|2 + (ML + 4;—1‘/) [eXE
+ (3= 2% + 307 ) My 2 — E5Re{Fiy Gy

+( —Ai—g) Re{ Py iy} — sz Re{Gin iy }

9 )\}/VV 4 )\Q/VV_ )\i\)’/VV_ )\XVV 12 )\g/VV 42 )\%/VV + V2 )\VV

f 2Fy
_9 /\YVV + )\gvv + /\va_ 2)\;/\/\/_ /\%/vv + /\yvv: 0

2
2AYVV_ AYVV_ \VVV_ \YVV 9)VVV_ 9\ VWV % AVV

AYVVE2AVVV AYVV \VVV_ \VVVL 9\ VYV 9\ VWV AN

2M2 V2Fy
N’l) — M\2/ N’l) — N’U —
]:VV__M‘Q,—t Gyv =Hyy =0
5 VE = (A} (p1,e1)A™ (p2, £2)|dy*ul0)
vy Vi (My — Ma, Fy = FRas Gov = Gias My = Hia)
FRa — 1+ 224 + 7W(M2 52000 + 20 + AT
+ (2M3F — 1) (20328 + AVAA — AYAA —2NTRA 4 ATPA

— 23 —




GAa

v
HAA

F2AVPA =AY + (=t — 2MR)NAA
% [ CAVAA L AVAA L \VAA 9(\VAA | \VAA) | \VAA )\}/LIAA}
— 28N 4 f(M? s [— 2AVAA + AEAVAA 4 (—4AM3 + 20)\YAA
2(AYAA + AYAA — AVAR) - (2MF + 26)\BA

+2M/21 (— )\;/AA i /\E\)/AA +2/\YOAA /\VAA 2/\VAA n )\VAA)}

ImlITaa

Imllyy (My — Ma, Fry — Fias Gyv — Gia Moy — Hia)

— 2AYAA L 2NYAA _ ZYAA _ Z\VAA 4 9)VAAL

AYAA L 2ARA AYMA - 2AYRA AT = 32 4 22H0A
— AYAA L AVAA _ \YAA oAV oA VAA L AV AV =0
9 /\YAA + /\;/AA_ /\:\))/AA_ /\XAA + /\;/AA + )\é/AA: . Fivz /\17%A

M2 )\VAA 2)\¥AA+ )\%/AA_ )\}/AA-F )\XAA-F

VAA _ \VAA VAA | \VAA _ V2ZMZA2A

~ M2 ~ ~
v v v v
fAA__ME_t gAA_,HAA_0

6,7

"
Ve,

7 = (R)_,(p1)R™(p2)|dy"ul0) = V2 F¥g(t) (p2 — p1)* (R=S,P)

v
fRR

B VRR__t
L+ D aVRR

ImHRR

0(t — 4ME) 22171: | Fer ()

2
MV

VRR _ V2 Tv  _
AT = — TRR = 325

Vi = (S)—(ps)V ™ (pv,€)ldr"u|0)

S

MV{(qE Py — apv ) F(t) + (ge* ply — qpsff*“)gs”v(t)}
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Fé DY+ J3E | — AWV - MEASVY - ML
x (ASVV 4 205VV) + (ME +¢)(2A3VY + Agvv)]
o \/]_Vﬁvfzv ASVV
ImllIgy O(t — (Mg + My )?) 4)\1/2(237{%71\4_‘2/) {Mz [(MV Mg)?
—~2(ME — 2M3) + 2| Ty P + iy [ 2ME (ME — MB)?
 H(=3M + 6MEME + MY) — 2M3 + ) G&, I
| — 200 — ME)? — 26(ME + MB) + 4 Re{FK Oy }
/\gvv + 2>\§vv - 4A§VV . 2/\§vv _ _%Agv >\§vv —0
Fo, = ]\V/I;F_‘/t [j{\iy AV — 2A§VV 4 Mg ()\SVV I 2)\8\/\/)] Ga =0
9 Vi = (P_,(pp) A~ (pa,€)|d"ul0)
Vo 22{(a=" Py = apa ) Fa(0) + (=" Plp — appe™) G (1)}
F ANPA | J\V/[; Vary [2 ADVA | g2 PVA | t+Miz—M% (APVA 4 2)PVA)
- MRAYA V) - |
G %)\PVA
ImITpa ImIlgy (My — Ma, Mg — Mp, F&; — Fpa, G&v — Gpa)
/\SVA + 2>\§VA _ 2>\gVA _ %AFA )\{’VA -0
Ty = 355 | S aPA 4 VA 4 MASME (\PVA L 9pEVA) Gy — 0
- AP AP
10 Vio = (1(py,€4)V " (pv,ev)|dy*ul0)
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VIO

%[{Ma gey (apy €5 — ag% py) + (apv P5 — apy i) (apy €325

—aqe; qff*v)}%f%(t) + {M?/ qey €3t — exev (qpv Py — qpy DY)
+qeyr gl (py — pv)”}gﬁy(t) + {qz—:f, eyt — qey Xt

—i—s*vsi; (p’i —p’(/) + M22 (qE qpv €1 — qey, qu/p}\ﬁ') }]

v
Fv,,

Gy

2v/2 F
(]V[\é_—it)v]\/j\% [2)\}/\/\1_ )\g/VV_ )\XVV+ 2)\31\/\/_’_ )\E/VV_ )\yVV]

rrme BNV 2gpy (W YV AV YY) ]

2)\VV
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M2 —t [2/\VV ]

IIHHVA/

2 3M2t M4 M2t M3
o | (5 IR IR (5 - 1) g
2
+ (—% + 2MEt — 3M€;) Re{Fy. Gy, "} + (% . va) Re{FY,}

+ (=3t + 6M2) Re{GP } + (g +1) +O (3) |

1
-9 )\YVV + )\é/VV + )\XVV —9 /\g/VV /\VVV + /\VVV T

VVV VVV VVV _ V2,VV _ 1
A3 VYA AT = A NeTa®

AVV _ _E AT
7 \/EM‘Q/
]T"‘}’ = _ t Gu — 3MZ A+t

¥ (MZ—t)MZ Vy T 2(ME-t)MT

11

Vi = (1(y,2)S™ (0)ldr"ul0) = Y255 (g* phi — qp, &) F, (1)

v
Fsy

SV 1 1 V2F SVV
4X3 (Ma—t + F@) ™ M‘Q/(Mé/—t) {_ 270

_ 2
_ %(Agvv + 2)\§VV) + t(2/\§VV + /\EVV)]

ImIIg,

1-M t
0(t — M2) F2 62%“?@2

AVV 4 20VY — addVV — axgVV = 28V
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v 2P 8 My SV SVV SVV SVV
7o, = i [T MY - 28V + 22 (8 +28V)| ‘

Table 1: Vector form factors: amplitudes, definitions, spec-

tral functions and constraints.

"4# = < Vlozl(pV7 E)ﬂ-_ (pw)|d_/7u75u|0 >

1
Al Mf{(qé‘* py — apv €M) L (t) + (2" pr — qpxe™” )gx%r(t)}
M? 2M?2
7, R
2 2
HOR = DAY+ (- 20
M2
Ge, 2 B0 4 2 S [ ot
ImlTy - Imllar (Ma — My, Fir — Fir: Gar — G0r)
2G G
A - AR — oA = e A A =
Fa (F_v_w_v) My -M3 _ 2Gy My
Vr — F M3 —t F ot
Go _ _2Gy MpM3
Ve — T TF (M2 —t)t
2| A= (S5 (po)ldrtrsul0) = ~2i F& () (9 — L8 ) p,
2 V2F SA
fsqﬂ % - F 4 M2 t/\
1-M2/t)
ImlIg~ ot — Ms)%ﬁsw( t)[?
SA _ _ V2 2cq M}
)\1 — FACd . fSn _ 2¢q J\/[2A
3 AL = (VL (v, ev)A™ (pa, ea)ldr*5ul0)
Al %%{2 (qpaply — apvp’y) [pAva*AE*V - qs*AQE*v]fv“A(t)

+2M3 [ (aparhy — apvit) hei — () +Ph) ashash + tasi e | G (0
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+2M3 | (apavhy — apvwly) et + (bl + P) 4oy, — tashiei” | Ha 1)
+| (M3 + M3) (apavy — apvi) iy + (M + M3) (0 — ply) astiasty

+(MZ - M3) (M3 a=thei ™ + M2 asei) | Tea ()}

Féy 2AYA+ A ANA - BE [ (M3 — M) (22 M 4+ AYM - M
—2AYAA— dgpaAYAA— 2MEAYAAE (4 M3 /2 4 3ME /2)AAA
—(MZ + M2 + (t+ M3%/2 — ME/2) (—A\AA+ AGAA 4 2204
SV - 22N ]
Gia —2AYAE 20 AR BEAT - AYAAS 2gpaNyAAE (MF - M) /4
(—AYAALAVAALAVRANYRA_2AVAAL AT — M2 AYAA
+(M3/4 4 3ME JHONA+ (—t — M3 /2 — MG /2)AAA
F(t+ M3/2- M2 /2) (=201 YA 2YAN)|
Ha 2AYA + 20 — Y3 | — AR = 2gparyAA - MEAYAA
+(M35 — ME)/2 (—2AYAA 4 AVAA - AYAY) 1 (=2t + BME + M3)A\/4
—2NPA+ (264 ME— M3)/4(AYAA— AYAA— 2X A+ ATPA— AYPAY
—(ME+ MHNPY2 - (¢ + M3 /2 - ME /203
7S, oy | AWM - 20T 2AYAA L AR \YAA L gp YA

i /\E\)/AA 19 /\YOAA CAVAA o /\YgAA n /\YfA]

TmTlya x | (B/8+0(0) IR [+ O@) 1G4, + OF) [H,
(M5 +AMEM3 + M) 8+ O(q7) [T + O(1) Re{ Fg G
+O() Re{FAHGp "} + (H(ME + M) /4 + O(t%)) Re{FG) T35}

+O(t%) Re{Gyy Hys "} + O(t") Re{Gyy T, "} + O(t°) Re{Hy, T3,

— 2AYAA L AYAA Z ATAA L AR L NI — NP — 2R AVRA
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= A { -y
M {4A1VAA +ANYAA — ANYAR — DAVAA L 9NTAA L 3NVAA L NYAA_ 9) YA \YAA
— WA A+ 2P ATRAL 1 3] - VM - AR YA
— 2AYAA L AYAA _ \VAA _ ) YAA L ATAA L AN — AYRA — 2AVPA A1V4AA}
—AAYAA = 2fM {)\VA+ IAVA 4 2)\VA}
_9 )\YAA_ )\;/AA n )\XAA_ )\g/AA_ )\é/AA _ }7/_3 { /\;/A_ )\;)/A_ /\%/A}
_9 )\;/AA_ )\é/AA + A;/AA_ )\g\)/AA_ 9 /\YOAA
— AT AT - oXE XY = v Ry DR Y
ANYAA — 2NYAA L o)\ VAA L AVAA _ \VAA L oAYAA L AYAA L 2ATRA

AA AA AA
— A= 20 AP = 0

~a \[M
Gy = — Y2l P}\t{ VIIA (YA — AYA = WYY — MM (M3 — M) /4

< (CAAYAA§ 2AYAA 2) VAN L \VAAL \WAAL 9)VAA VAL 9)¥AAL NVAY
CMBAPA MEAYA G (M4 4 BME AN (1132 + M5/2>A8VAA}

~CL a 2M NCL NCL
HVA = gVA MZ—t [ )‘VA )‘:\’)/A] fVA :IVA =0

4 AL = (Pi_y(pp)V ™ (pv,€)ld " 35ul0)
Al }\?j{(qe* Py — apv ) Fiy(t) + (a=" pp — qpps*“)gffv(t)}
Fay APV (_ _ 1) AV 4 fFA 2/\PVA + M2 )\PVA
4 EEMEZME (\PVA 4 9\PVA) _ (2APVA 4 \PVA) _ MaAg’VA}
G HEAY -+ Y3 ()
ImIIpy Imllsy (Ms — Mp, Fgy — Fpv, 9§y — Gpv)
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VAL 2APVA AXPVAZ APV — 2 (APV 4 2NY)  APVA = YT
2 2 2
P = s [ (450 - M3) APV - 2RV e

M2 —M?2
v Mp (AEVA + 2/\§VA) o M‘Q/A(P;VA}

2]\/[ M?2
APV
gPV (M2 —t)t )‘

5 AE = (S)_o(ps)A™ (pa, €)|dy*ys5ul0)
Al F@{(qs*pi — qpa ™) F (1) + (ae™ pls — qpse*u)gS?A(t)}

2 _ A2
M i) a1 5+ A%AA)]

Ga, 2MA ASA ]\\gﬁ (M3ASAA)
ImlIlga Imllgy (My — Ma, Féy — F§a, G8v — GSa)
AL 2ASAAL NSAA_0)SAA — _2/B (3844 9)\ga)  sAa _ VR
}—SA \/[;FAt [_%_3 <_%ﬁ + 3fo) /\§A gSaA (J\Zévjit) /\SA
— DELSA 4 XN+ MIXEAN — ZE (M 2050 l
6 | AL = (S0 y(ps) P (pp)ldy sul0) = —2i Fgp(t) (¢ — LL) pp,
fSaP \/i)\?P 12 tFA)\SPA
ImTsp 0(t — (Ms + Mp)?) > —LEME) | Fg (1))2
ASPA:_ﬁ%F . ﬁs%()—\]\gzM?)‘sp
7 A7 = (v(py, )7~ (pr)ldyy5ul0)
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AZ iv2eF (5*“ — 2q5*%) “[e (g™ P — qpy ") F 2 (1)
2 R R e (A T - 2
Il ;_22@| 7 = 127r Re{Fx }+%
YA AR —oaA = 4 v
Fet) = 3= [F3 + 38 @FvGy - RY)]
8 AL = (7(py,e1) A (pa,ea)|dyty5ul0)
AL NCITIT {2/M5 (qparhy — ap-py) [pApfyezei — qetqer, ] Fit)
+2M3/Mx2/[(qp,4pfy‘ — apyplh)easy + (P + ) ashaes — th*AEf/u} G4.(1)
FRMEFA| e (04 4+ 9) + gt (0 + P achast — taie ”)]}
Fs 2Py (AYAF 20VAL 20VA) + ]gﬁ t {M@Aéf*— B[ - ayas
+qu( /\VAA+ /\VAA /\VAA_|_ )\VAA_|_ 2/\VAA /\VAA 2/\VAA_|_ /\VAA)]}
g4, 2F (A + AA) + 57 t{— ME + 2MENMA \/iFv{)\XAA-F 2ANVAA
1apa (AN 2AYM) gp, (WAL AYAAL \VAA | 9\VAA \VAA, AYfA)]}
ImLy, x [O(2) |F4, 12+ O1) 64,12 + O(t) Re{F£,G5,"} + O]

AA AA AA AA AA AA AA AA
QAYAA L AYAA _ Z\VAA L AVAA L oAV — NYAA — 20 VRA LAY

_ 1 _o\WA_ 4\VA_ 4\ VA
= A { -y apr -
2AVAA%_AVAA AVAA%_AVAA+_2AVAA AVAA. QAVAA+_AVAA AJQAVAA

= {2 2 B A

AA AA AA AA AA
2AYAA 4 AYAA — ATAR L AYAA 4 201G
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+ANMA - APA L VMR AT = 22LYA L A

Fi =0 Gy = %{ S MBI (n YA o) }
9 Ay = (v(py,€) P~ (pp)|dy*y5ul0) = iv2e(ge” P — qpy ™) FE. (1)
7:1517 _4]1;%{{’? 4 2F]‘;I§v " 4F]‘&%§v n (]\\/g{?ﬁ‘//{a "
| = 2 = SEEOP 4 20V oA 4 AP
Imllp, ot — 2y 2 (ZMB 4
AVA 4 2ABVA _ )RVA L 9)PVA _ _2Y2 (\PV 4 9PV
71, =i | - B 0D o) + MR
4 2APVA %}% (AEVA 4 9pPVA) }
Table 2: Axial form factors: amplitudes, definitions, spec-
tral functions and constraints.
1 St = (n(py)7™ (px)|dul0) = F7,(t)
Fs, V2 By (1+4%8 57
TmIL,,, 0(t) 157 | Foiy (1)
deqem = F2 — fﬁn(t) = /2By ijé[git
2 Sy = (AY_o(pa,e)m (ps)|dul0) = 5f~ qe* F4.(t)
Fi _8Bg CF APA z\g%t
T, ot — M%) % | Fiel?
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3 S = (P_o(pp)m (pe)ldul0) = Fi, (1)
t—M?
f;ﬂ_ _4B%d7n + 4B%C7,L Mg_]; )\?P
_ M2
il Ot = Mp) g2 P ()
m T d’HL M2 _M2
AP = —dm — Fi () = 4By J@T—ts
4,5 S5 = (RY_y(p1,€1)R™ (p2,€2)|dul0) (R=V,A)
Sff,5 ML%(qe’{ qes — pip2 €5€5) FER(t) + €1 e5 Ghn(t)
FER —8v2By [ ABR 4 M2 g (SRR _ PPz SRR _ ) \SRR
- 2V AR
77L ]\42
Jitn —8V2By- M2 t
2
2
+(3-mg d—[R) G8al” + (6 — &) Re{Finin }
ASRR | 9\SRR — _ AT SRR _
Cm
)\SRR )\SRR )\RR M2
A2 +ASRR — 2A§RR _ \SRR — S s
Fir = Gin(t) =0
¢ Sk = (S9_o(p1) S~ (p2)ldul0) = F5(t)
SSS SSS 2
Fss —4v3Bo |\ + 2 4 g |
IIHHSS 9( 4M2)0MS |‘7:35( )|

SSS
/\1

=2 - Fég = —22b [3M2A35 + 3¢, A555]

M2t

Cm
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7 Sy = (P_o(p1) P~ (p2)|dul0) = Fgp(t)
PP m SPP _ 72
- v o+ L7 4 s
Imep 9( 4M2)0MP |‘7:PP( )|
PP ~
/\?PP _ _2;\:1 . ]'—ffP _ zﬁV\[/;Bg [(Ms o 2M2)>\PP + Cm/\SPP]
8 Sé‘ = <S?:1(pS)V_(pV> )|du|0> M qe }—sv( )
2
Fv —4V2 By ey \VSS
S
2\3/2 t,M27M2
ImTTsy 0t — (M + My)2) WAENE) | 2
AVSS =0 —  F&(t) =0
9 Sy = (Pi_y(pp)A™ (pa,e)ldul0) = M_ qe™ Fa(t)
M2
N 4v/2 By ¢y ASPA T
A3/2(¢, M2, M2
Iinllp Ot — (Mp + M)?) “EG2EMA) | s,
NPA=0  —  F () =0
10 Sip = <’Y(p7757)v_(PVaEV)’CZu’0>
Sio siz (481 4 — pvpy eyel) FP, (1)
f\ﬁfy 1?\/%0 C;n /\SV 8\/_]58 Fy )\VV 4]\V/I;BE?VIC? I;)V %
X2V o OSVY 203V — MECATY 4 23V))]
1-M2 /t)3
TmITy, 6(t — M) Sgrsae? 17y, I
gy

AV 225V = —

m
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VY SVV SVV SVV svv_ 4NV ME | avaagy
T(}‘g/— + )\2 + 2)\3 - 4)\4 - 2)\5 = — Cfi W‘S{' FVS
F, =0
11 Sty = (7 (py,€)8™ (ps)|dul0) = e qe* F§, (1)
8 By ¢
T3y At
ImITs, 0

Table 3: Scalar form factors: amplitudes, definitions, spec-
tral functions and constraints.

1 Py = (1(pe)V ™ (pv, e)lidysul0) = 317 g=* FP (1)
FE. 2 (V2GY ML + 4dy ATV )
Imly, 0(t — M) % [l
~VIGY +4dn NV =0 FP (1) = 225Gy SN
2 Py = (S)_o(ps)m™ (pr)lidysul0) = FE (1)
F, e — et piE e SN
s Ot~ M3 | FL (1)
3 Py = (Vi1 (pv,ev)A™ (pasea)lidysul0)
Py T (957 05 — pvpa i) FUA (1) + ey £ G (1)
FE ~4V2Bo| = 221 + (= 20t + M + MM + 2M2AP

— (t+ ME — MR)(AYA 4+ 200%) + Nfgﬂ_t (2A5VA
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—prpaOEYA +205VA) — MF2APYA +PVA) — MEAPVA)|

gl ~4V2BoMaMy 3 (22 + AY) + 5 VA
A\L/2 7]\42 7]\42
ImITy, 0(t — (My + Ma)2)2 2l A’{ — SPABERe{FirGiin
AM2 M2 — 24 (t—M2)2+(t—M?2)?
A 21(v13M‘é) ( a) |]:§R|2

10M2 MZ —t2+(t—M2Z)2+(t—M3%)? G |2
+ M2M2 | RR|

APVA L 2NEVA = - (SAYA 203 + AV + 2001

ANSVA + (M + ME)(AEVA + 2X5VA) — ME(ANEVA 4+ 2XEVA) — 22 AEVA =

A (AMENYA +(ME— ME— MZ)ANYA+ MEAYA+ Y ME— ME+ M) A2+ 20)2))

2APYA = 1 (2A¥A | \YA)
Fy = V2BME [o(Mp+ MM 2PN+ (M~ MR O +225%)]

MaMy M2,
Gy = —2V2By ?42‘/@ (223" +A5%)

4 Py = (Pl (pp)V™ (pv, ©)lidysul0) = 37 g™ Fiy (1)
7, 22 By (—MEALY — 2ol \ver)
ImIIpy 0(t — (Mp + My) )%! Fl?
AVPP — L PV N FI_ = 298, (szv[ﬂMf APV
5 P = (S1_o(ps)A™ (pas€)lidysul0) = 37— ge* F\ (1)
FE, 2v2 By (MAXH — il \sPa)

N2(1,0M3,M3)

ImlIga Q(t— (M5+MA)2) TEIVEN:

[Féal?
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NPA = LA Rl = 2VEB Gt g
6 Py = {S)_o(ps) P~ (pp)lidysul0) = FLp(®)
FL, —4V32B, [}\SP t+M4t Mp)\SP
dm S S
trar (A" + (t+ Mp — MZHAPTT) ]
1/2 2 A2
ImlIIgp H(t - (MS + MP)Q)%L}—SPPQ)P
A = e
~ 2 2 2
+ (202 — M2) AP + dmASPP]
7 PL = (7 (py, )7 (pr)|idy5ul0) = eqe™ Fi (t)
fw’y QﬁtBOF
ImII,, 0
8 Py = (1(py: 1) A" (a;€a)lidy5ul0)
Py 115 (455 454 — Papa i) F i, (1)
j_-;z;’y \fle By 15)\/[B()il£n )\PA 4\f1\§0 FV{ 2)\}”\4_ﬁ[— 2(t + Mi))\gA
—(t = MDA + 2>\¥A)} M2 —t [2>‘PVA — pypa(AS VA 4+ 205V
—M3@APVA + APV }
ImIl 4, ot — MA)%G t2 74, 17

APVA L 2AEVA = S (BAYA + 205" + AYA + 2031
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ANTVAL MEOEVAF 2ABVA- ANEVA— 20EVA) — L (4MBAYA+ (M} — M)A

2
+ MR+ MDY +203%)) = 52 (V2F + 16d,,054)

Fp _ V2B M} F A A A
Fhy = Gr-or [FA =z (F2MEN + ME(O™ +2057))

9 Po = (7 (py,€") P~ (pp)|idysul0) = e qe F£_(t)
p 8 Bodm

j:P'y Mf(_.),—t

ImIlp, 0

Table 4: Pseudoscalar form factors: amplitudes, definitions,
spectral functions and constraints.

Vector form factor to ©m

v FyGy _ ¢ FyiGyr ¢
f7r7r L+ F2 MZ—t + F? M‘Q/,—t
Fy Gy + Fy:Gyr = F?
~ ]\/12
v A%
fﬂ-ﬂ- J\/[‘Q/_t + O(E)
Vector form factor® to Pr
!
Fu 22VFRy 2PV R
P F MZ—t F M2, —t
!
Fy XXV + Fp APV =0
~ M2 —J\/[2
v F v/ \%
Fin Vi, ar—oni,—n + O

Vector form factor? to Arn

3We use here the constraint coming from the pseudoscalar form factor to Vr (table @)
4The constraints of eqs. () have been employed.
®Note that we have used the constraint coming from the scalar form factor to Aw (table E)
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G i

R = = N e

+ B g o oy Ay - o]

\vd

M5 2F,, M3 A
2 s | — 2N+ R+ s | o Ay

Fat By (—208 4+ 20" = AYA = 2038 4+ Fys (—20] 44 2] 4 24— 201™4) = 0

v (=282 4+ A+ R (<20 ) = o0

Fy M2,-M3  F2 (M3-t)(MZ,—M3)

Vv
F in i el T s A )
~ 2FM2  M2,—M}
Gi- B e (Ma—vt)(Ma,—t) +0(e)
Axial form factor® to Sw
2 V2F SA _ V2Fy SA
F§ %_ FAJ\/[2 t>\ 7 Mf‘t,—tM
FANA + Fudf4 = —V/2¢q
ﬁa 2¢cq Mi/
S F MZ2,—¢
A
Axial form factorH to Vnm
2
Fe. — B2 2 Moy Bt (B2 - ) [ - 28R+ 0+ 2]
+ (B2 = 1) [ =22+ 24 2004
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Table 5: Form Factors with extra multiplets V/ and A’.
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B. One-loop corrections II(t)|m,,ms

B.1 Single resonance approximation

In this appendix we show the explicit form of the one-loop corrections generated by the
considered two-particle absorptive cuts, which have been calculated by using the dispersive
method discussed in section 4. Note that the different II(¢)|r, include the factor 2 that
accounts that, for instance, the axial correlator gains contributions both from the p'7—
and p~7° channels. These expressions can be simplified by means of the large- N relations
in egs. (§), (E9) and ({.I0), which relate the resonance masses and the couplings Fy,
Gy, Fa, cg:
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I(t)|pr = 0. (B.4)
B.2 Contributions from extra multiplets V', A’

Now we give the explicit expressions of the one-loop resonance corrections in the case of
considering an extra multiplet for V/ and A’. In the case of the V7 cut, the result is the
same as in the SRA, i.e. eq. (B.]). For the case of the St one can use the result in the
SRA, with only changing M4 to M4 everywhere. For the other ones, one finds

2
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In section 4.2 the high-energy behaviour of the correlator is expressed in terms of the
functions &m,m,, which read
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Finally, we present the required functions for the determination of the chiral couplings
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C. Dispersive relation

In the purely perturbative calculation (without Dyson resummations) and under the Single

Resonance Approximation, the two-point function at next-to-leading order in
expansion reads as:

the 1/NC

(C.1)

where Mp is the mass of the corresponding resonance in the s-channel, and D(t) is an

analytical function except for the unitarity logarithmic branch (without poles).

Knowing its absorptive part, we can reconstruct the full correlator II(¢) up to appro-

priate subtraction terms. Let us consider the complex integration circuit shown in figure [,
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ft}=oo

Figure 3: Integration circuit.

which avoids the cut on the real axis. One has then the identity:

Mi(s) = — jq{ ar 1O (C.2)

2 t—s

If it is assumed that |II(¢)] — O when || — oo, the contribution from the external circle of
the circuit is zero and it is found that:

eD’ 2 e 2
1) = 3 MOy~ S ?Mli (j‘if;l,
R

my,ma2

(C.3)

with D'(t) = %D(t) and with the different contributions of each two-meson absorptive cut

given by the dispersive integral,

ME=¢ 1 TmlI(t oo 1 ImII(t
n<s>|ml,m2=nm[/ o 1Ol [ gy 1Tl
0

e—0 s t — s MIZ%-FE is t — s
2 ImII(¢
2 lim {(Mé—tﬁm}] ’ (C.4)
TE t—M32 t— s

where Mp is the mass of the intermediate resonance produced in the mi, mo form-factor.

From eq. ([C.3), one notices that, as soon as the value of the real part of D(t) and
its first derivative are fixed at M}%, the whole correlator becomes fixed by them and the
spectral function at t # M}%.

The fact that the spectral function vanishes at infinite momentum ensures that there
are no terms of the form I1(¢) ~ ¢t™ In (—t), with m > 0. Furthermore, the polynomial terms
II(t) ~ t™ with m > 0 must be also identically zero in order to keep II(t) — 0 at |t| — oc.
Hence, the expression in eq. ([C.3), is the general expression for the correlator within the
SRA. The inclusion of higher resonances can be performed in a straightforward way.

Although the presence of O(p*) YPT operators with NLO couplings in 1/N¢, Zi, is not
forbidden a priori, the QCD short-distance behaviour imposes that they cannot contribute
to the observable. This provides a further understanding to the lack of running found in
the L, couplings in the one-loop analysis of the generating functional performed in ref. [[7]
after imposing the high-energy constraints.
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C.1 Diagrammatic calculation

For sake of simplicity we will refer now just to the vector correlator although the extension
to other channels is straightforward. At tree-level, it is found that

2F2
va(t) = 2 ‘it'
1%

(C.5)

The ultraviolet divergences of the one-loop calculation can be avoided, making use of the
dispersion relation ([C.J). One has then:

D(t) | 1—loo C1 C2
II (t)‘l—loo = ——2 = H(t)’m ma T + ’ (0'6)
o b (Mg —v)? 2 My~ (MR —t)”

mi,m2

where ¢; = —Re {D’(M‘%-)h_loop} and co = Re {D(M‘z,)\l_loop} are the relevant subtrac-
tion constants. Since these two constants are of NLO, the subtraction terms of the one-loop
calculation can be reabsorbed into the tree-level contribution through the redefinitions:

C2

2E7 (C.7)

1
F\T/2=Fx2/+§cl, My? = M —

which amount to a NLO dressing of the resonance coupling and mass.

C.2 Contribution from high-mass absorptive cuts

Because of the approximation of neglecting intermediate states with two resonances, made
in section 4, it is convenient to analyse the effect on the YPT couplings of absorptive
cuts with higher and higher production thresholds. When the threshold Afh is above the
resonance mass M}%, one finds for the low energy limit s < Afh,

© 1ImIl(t) =/ s \" [, 1ImI(x-A%)

2
Ath n=0 1

The contributions become smaller and smaller as the value of the production threshold Afh
is increased, supporting the approximation in section 4.
On the other hand, in the deep euclidean region Q% = —s > A%h, one gets

ML < g [ de 3 )] (C9)

2
Ath

which becomes smaller and smaller as Afh is increased.
Note the importance of a well-behaved spectral function, that is, ImII(t) — oo at
|t| — oo, in order to be able to use the expressions of this appendix.
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